EEG correlates of physical effort and reward processing during reinforcement learning
نویسندگان
چکیده
منابع مشابه
Musical Sequence Learning and EEG Correlates of Audiomotor Processing
Our motor and auditory systems are functionally connected during musical performance, and functional imaging suggests that the association is strong enough that passive music listening can engage the motor system. As predictive coding constrains movement sequence selections, could the motor system contribute to sequential processing of musical passages? If this is the case, then we hypothesized...
متن کاملReward, Motivation, and Reinforcement Learning
There is substantial evidence that dopamine is involved in reward learning and appetitive conditioning. However, the major reinforcement learning-based theoretical models of classical conditioning (crudely, prediction learning) are actually based on rules designed to explain instrumental conditioning (action learning). Extensive anatomical, pharmacological, and psychological data, particularly ...
متن کاملReward and reinforcement activity in the nucleus accumbens during learning
The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. T...
متن کاملCompatible Reward Inverse Reinforcement Learning
PROBLEM • Inverse Reinforcement Learning (IRL) problem: recover a reward function explaining a set of expert’s demonstrations. • Advantages of IRL over Behavioral Cloning (BC): – Transferability of the reward. • Issues with some IRL methods: – How to build the features for the reward function? – How to select a reward function among all the optimal ones? – What if no access to the environment? ...
متن کاملAn Average - Reward Reinforcement Learning
Recently, there has been growing interest in average-reward reinforcement learning (ARL), an undiscounted optimality framework that is applicable to many diierent control tasks. ARL seeks to compute gain-optimal control policies that maximize the expected payoo per step. However, gain-optimality has some intrinsic limitations as an optimality criterion, since for example, it cannot distinguish ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurophysiology
سال: 2020
ISSN: 0022-3077,1522-1598
DOI: 10.1152/jn.00370.2020